An integrated genomic approach identifies that the PI3K/AKT/FOXO pathway is involved in breast cancer tumor initiation

نویسندگان

  • Linda Smit
  • Katrien Berns
  • Katherine Spence
  • W. David Ryder
  • Nik Zeps
  • Mandy Madiredjo
  • Roderick Beijersbergen
  • René Bernards
  • Robert B. Clarke
چکیده

Therapy resistance is one of the major impediments to successful cancer treatment. In breast cancer, a small subpopulation of cells with stem cell features, named breast cancer stem cells (BCSC), is responsible for metastasis and recurrence of the tumor. BCSC have the unique ability to grow under non-adherent conditions in "mammospheres". To prevent breast cancer recurrence and metastasis it will be crucial to eradicate BCSC.We used shRNA genetic screening to identify genes that upon knockdown enhance mammosphere formation in breast cancer cells. By integration of these results with gene expression profiles of mammospheres and NOTCH-activated cells, we identified FOXO3A. Modulation of FOXO3A activity results in a change in mammosphere formation, expression of mammary stem cell markers and breast cancer initiating potential. Importantly, lack of FOXO3A expression in breast cancer patients is associated with increased recurrence rate. Our findings provide evidence for a role for FOXO3A downstream of NOTCH and AKT that may have implications for therapies targeting BCSCs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway

Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...

متن کامل

PI3K/Akt inhibition and down-regulation of BCRP re-sensitize MCF7 breast cancer cell line to mitoxantrone chemotherapy

Objective(s):Multidrug resistance (MDR) of cancer cells is a major obstacle to successful chemotherapy. Overexpression of breast cancer resistance protein (BCRP) is one of the major causes of MDR. In addition, it has been shown that PI3K/Akt signaling pathway involves in drug resistance. Therefore, we evaluated the effects of novel approaches including siRNA directed against BCRP and targeted t...

متن کامل

FOXO factors and breast cancer: outfoxing endocrine resistance.

The majority of metastatic breast cancers cannot be cured and present a major public health problem worldwide. Approximately 70% of breast cancers express the estrogen receptor, and endocrine-based therapies have significantly improved patient outcomes. However, the development of endocrine resistance is extremely common. Understanding the molecular pathways that regulate the hormone sensitivit...

متن کامل

FoxO transcription factors promote AKT Ser473 phosphorylation and renal tumor growth in response to pharmacologic inhibition of the PI3K-AKT pathway.

The PI3K-AKT pathway is hyperactivated in many human cancers, and several drugs to inhibit this pathway, including the PI3K/mTOR dual inhibitor NVP-BEZ235, are currently being tested in various preclinical and clinical trials. It has been shown that pharmacologic inhibition of the PI3K-AKT pathway results in feedback activation of other oncogenic signaling pathways, which likely will limit the ...

متن کامل

Molecular and Cellular Pathobiology FoxO Transcription Factors Promote AKT Ser473 Phosphorylation and Renal Tumor Growth in Response to Pharmacologic Inhibition of the PI3K–AKT Pathway

The PI3K–AKT pathway is hyperactivated in many human cancers, and several drugs to inhibit this pathway, including the PI3K/mTOR dual inhibitor NVP-BEZ235, are currently being tested in various preclinical and clinical trials. It has been shown that pharmacologic inhibition of the PI3K–AKT pathway results in feedback activation of other oncogenic signaling pathways, which likely will limit the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016